Induction of Mn^{2+}/H^+ antiport in chicken erythrocytes by intracellular Mg^{2+} and Mn^{2+}

T. Günther and J. Vormann

Institute of Molecular Biology and Biochemistry, Free University of Berlin, Arnimallee 22, D-1000 Berlin 33, FRG

Received 27 March 1990

Chicken erythrocytes preloaded with Mg²⁺ exchange one extracellular Mn²⁺ fo two intracellular H⁺. Chicken erythrocytes preloaded with Mn²⁺ alone or with Mg²⁺ plus Mn²⁺ performed efflux of Mn²⁺, which was higher at pH 6 than at pH 7.4, indicating reversibility of Mn²⁺/H⁺ antiport. Mn²⁺/H⁺ antiport was not inhibited by 1 mM KCN plus 1 mM iodoacetic acid or 1 mM amiloride. Mn²⁺ influx was activated by anions, Mn²⁺ efflux via Mn²⁺/H⁺ antiport was inhibited by competition between H⁺ and K⁺.

Mn2+ influx; Mn2+ efflux; Mn2+/H+ antiport; Mg2+-Mn2+ loading; Erythrocyte

1. INTRODUCTION

In preceding experiments we found that Mg^{2+} -loaded chicken erythrocytes took up considerable amounts of Mn^{2+} , whereas Mg^{2+} -unloaded chicken erythrocytes took up only a little Mn^{2+} [1].

Since the drastic Mn^{2+} uptake by chicken erythrocytes was not in exchange for intracellular Mg^{2+} , as was the case in rat erythrocytes [1], we investigated by which mechanism intracellular Mg^{2+} can induce Mn^{2+} uptake in chicken erythrocytes.

2. MATERIALS AND METHODS

Blood was taken by venous puncture from chicken by means of a heparinized syringe and centrifuged at $1000 \times g$ for 10 min. The plasma and buffy coat were aspirated and the red cells were washed twice with 150 mM KCl.

The cells were loaded with Mg^{2+} by incubating a 10% cell suspension for 30 min at 37°C in KCl medium (in mM: 140 KCl, 50 sucrose, 5 glucose, 30 Hepes-Tris, pH 7.4) with the addition of 12 mM MgCl₂ and 6 μ M A23187 (dissolved in dimethyl sulfoxide). For loading the cells with Mg^{2+} plus Mn^{2+} , the cells were loaded first with $MgCl_2$ for 30 min and thereafter 3 mM MnCl₂ were added and incubated for an additional period of 15 min. For loading the cells with Mn^{2+} alone, the cells were analogously incubated with 3 mM MnCl₂ in the presence of A23187.

The cation ionophore was removed by 4 incubations in KCl medium with the addition of MgCl₂ or MnCl₂ and 1% bovine serum albumin for 10 min at 37°C. Thereafter, the cells were washed twice with sucrose, KCl or NaCl medium. Sucrose medium contained (in mM): 350 sucrose, 5 glucose, 30 Hepes-Tris, pH 7.4. NaCl medium was prepared by substitution of KCl in KCl medium by 140 mM NaCl.

Mn²⁺ influx into Mg²⁺-loaded cells or Mn²⁺ efflux from Mn²⁺-loaded cells was measured by reincubation of a 10% cell

Correspondence address: T. Günther, Institute of Molecular Biology and Biochemistry, Free University of Berlin, Arnimallee 22, D-1000 Berlin 33, FRG

suspension at 37°C as indicated. At the beginning of reincubation and after 30 min, 0.5 ml aliquots of the cell suspension were centrifuged for 1 min at $10000 \times g$.

For measuring intracellular Mg^{2+} and Mn^{2+} content, the sedimented cells were washed twice with 150 mM KCl and hemolyzed by adding 750 μ l H_2O . 50 μ l of the hemolysate were taken for determination of hemoglobin by means of the cyanmethemoglobin method. The rest was deproteinized by addition of 50 μ l 75% trichloroacetic acid (TCA) and centrifuged.

Additionally, Mn²⁺ efflux from Mn²⁺-loaded cells was determined by measuring Mn²⁺ in the reincubation medium after centrifugation of the cell suspension. Mg²⁺ and Mn²⁺ were measured by atomic absorption spectrophotometry after dilution with 10% TCA/0.175% LaCl₃.

H⁺ excretion of chicken erythrocytes during Mn²⁺ uptake was measured directly by pH measurement of a 10% cell suspension in unbuffered KCl medium (Orion, model 701 A). For determination of total H⁺ release, the same cell suspension, incubated without addition of MnCl₂, was titrated with 0.1 N HCl to the same decrease of pH which was measured during Mn²⁺ uptake.

When neutralized ampholine was used in the medium instead of NaCl or KCl, the same procedure was applied as described earlier [1].

3. RESULTS AND DISCUSSION

Mn²⁺ uptake by Mg²⁺-loaded chicken erythrocytes occurred in sucrose medium which did not contain Na⁺, K⁺ or Cl⁻ ([1] and Fig. 1). Therefore, Mn²⁺ influx cannot be performed unspecifically by the (KCl)-or (Na,K,Cl)-cotransport system.

 $\mathrm{Mn^{2+}}$ influx into $\mathrm{Mg^{2+}}$ -loaded chicken erythrocytes was the same in NaCl and KCl medium and 5 times higher than in sucrose medium [1]. $\mathrm{Mn^{2+}}$ influx in these media obeyed Michaelis-Menten kinetics; the K_{m} values were identical, amounting to 4 mM (Fig. 1).

From these results it can be concluded that the mechanism of Mn^{2+} uptake in all media may be the same, although V_{max} of Mn^{2+} influx was increased in NaCl and KCl medium. Fig. 2 shows that the activation of Mn^{2+} influx by KCl followed Michaelis-Menten

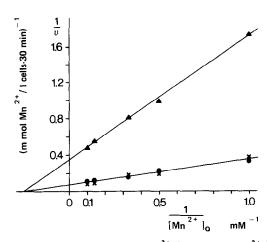


Fig. 1. Lineweaver-Burk plot of Mn²⁺ influx into Mg²⁺-loaded chicken erythrocytes. The cells were incubated in sucrose medium (♠); NaCl medium (♠) or in NaCl medium with 10 mM bicarbonate (×). Mean of 2 experiments.

kinetics; the K_m value for KCl activation amounted to 87 mM. Since ampholine-Cl activated Mn²⁺ influx (Table I), the activation must be performed by Cl⁻. The activation of Mn2+ influx by various potassium salts (Table I) shows that the activation was unspecifically performed by anions. To evaluate the mechanism of Mn²⁺ uptake, we measured whether other cations are simultaneously released from the erythrocytes during Mn²⁺ uptake. Mn²⁺ influx into chicken erythrocytes was not accompanied by an efflux of intracellular Mg²⁺ [1], K⁺ or Na⁺ (data not shown). Therefore, in these cells, extracellular Mn²⁺ is not exchanged for intracellular Mg²⁺, K⁺ or Na⁺. Since Zn²⁺ is taken up by human erythrocytes as a negatively charged (Zn,bicarbonate, Cl)-complex [2], we tested the effect of extracellular bicarbonate on Mn²⁺ uptake.

Mn²⁺ influx was not influenced by extracellular bicarbonate (Fig. 1) nor was it inhibited by SITS (Table

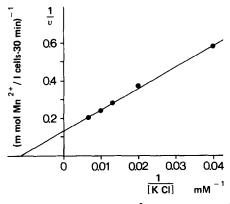


Fig. 2. Lineweaver-Burk plot of Mn²⁺ influx into Mg²⁺-loaded chicken erythrocytes. The cells were incubated with 3 mM MnCl₂, sucrose medium was isoosmotically substituted by KCl, as indicated. Mn²⁺ influx at 0 mM KCl (sucrose medium) was subtracted. Mean of 2 experiments.

Table I

Activation of Mn²⁺ influx into Mg²⁺-loaded chicken erythrocytes by various anions

Medium	Mn ²⁺ influx	
Sucrose	1,60	
NaCl	7.30	
KCl	7.66	
Ampholine-Cl	7.45	
KNO ₃	7.53	
KI	8.85	
K₂SO₄	6.82	

Salt concentration of the media amounted to 150 mM and 3 mM MnCl₂. Values in mmol/1 cells × 30 min. Mean of 2 experiments

Table II

Effect of inhibitors on Mn²⁺ influx and Mn²⁺ efflux from chicken erythrocytes

Medium	Mn ²⁺ influx		Mn ²⁺ efflux	
	Sucrose	KCl	Sucrose	KCl
Control	2.15	9.63	4.98	2.26
Amiloride (1 mM)	2.10	9.40	5.24	2.40
Furosemide (1 mM)	2.08	9.30	5.54	2.53
SITS ^a (30 µM)	2.05	9.20	5.44	2.43
SITS (100 µM)	1.99	9.15	_	_
KCN (1 mM) + iodo-				
acetate (1 mM)	2.12	8.38	_	_

 Mn^{2+} influx was measured using Mg^{2+} -loaded cells and 3 mM $MnCl_2$ in sucrose or KCl medium. For measurement of Mn^{2+} efflux, Mn^{2+} -loaded cells were taken. Values in mmol/l cells \times 30 min. Mean of 2 experiments

II). Thus, Mn²⁺ uptake as a negatively charged bicarbonate or (bicarbonate, Cl)-complex via capnophorin, as found for Zn²⁺ [2], can also be excluded.

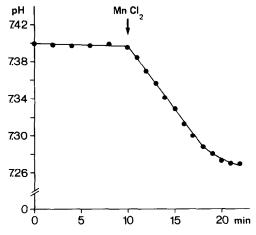


Fig. 3. Mn²⁺-induced efflux of H⁺ from Mg²⁺-loaded chicken erythrocytes. The cells were incubated in unbuffered KCl medium, 1 mM MnCl₂ was added as indicated. Mean of 2 experiments.

^a 4-Acetamino-4'-isothiocyanatostilbene-2,2'-disulfonic acid

Therefore, we investigated whether Mn²⁺ can be taken up in exchange for intracellular H⁺.

When Mg²⁺-loaded chicken erythrocytes were incubated in unbuffered 150 mM KCl, with 5 mM glucose, there was no significant alteration in pH (Fig. 3). However, after addition of 1 mM MnCl₂, pH in the medium dropped by 0.12 units within 10 min. At the same time, the cells had taken up 4.2 mmol Mn²⁺/l cells. Since a part of the released H⁺ was bound to the cells, we measured H⁺-binding by adding 0.1 N HCl to an analogous cell suspension without addition of MnCl₂, until the pH of the cell suspension was reduced by 0.12 units.

This drop in pH was reached by addition of 9 mmol H^+/l cells. When comparing this amount with the uptake of Mn^{2+} under the same conditions (4.2 mmol/l cells) it can be deduced that 2 H^+ were released for 1 Mn^{2+} , indicating electroneutral Mn^{2+}/H^+ antiport. The alternative possibility that Mn^{2+} was taken up in combination with 2 OH^- is unlikely because of the high Mn^{2+} concentration needed for Mn^{2+} influx and the low OH^- concentration in the medium.

Furthermore, from the result that Mg²⁺-unloaded cells did not perform Mn²⁺/H⁺ antiport, it can be inferred that the increase in intracellular Mg²⁺ by Mg²⁺ loading was necessary to induce this antiport.

Among the antiport systems, Na^+/H^+ antiport [3,4] and Na^+/Ca^{2+} antiport [5,6] are operating in a reversible manner, whereas Na^+/Mg^{2+} antiport from Mg^{2+} -loaded erythrocytes was asymmetric [7,8]. Therefore, we tested the reversibility of Mn^{2+}/H^+ antiport. As shown in Fig. 4, in sucrose medium there was a high rate of Mn^{2+} efflux from chicken erythrocytes

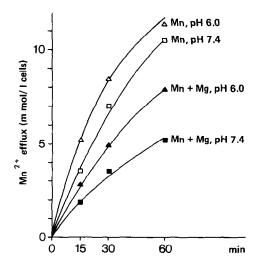


Fig. 4. Mn^{2+} efflux from preloaded chicken erythrocytes. The cells were loaded with Mn^{2+} alone (Δ , \square) or with Mg^{2+} plus Mn^{2+} (\triangle , \square) and reincubated in sucrose medium at pH 6 (Hepes-Tris) (Δ , \triangle) and pH 7.4 (Hepes-Tris) (\square , \square). Mn^{2+} content amounted to 24 mmol/l cells for Mn^{2+} -loaded cells and to 21 mmol Mn^{2+} /l cells for Mn^{2+} plus Mg^{2+} -loaded cells. Mg^{2+} content of Mg^{2+} plus Mn^{2+} -loaded cells amounted to 16 mmol Mg^{2+} /l cells. Mean of 2 experiments.

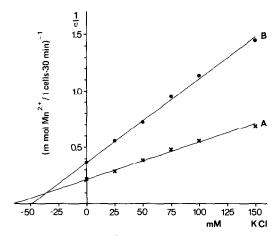


Fig. 5. Dixon plot of Mn²⁺ efflux from Mn²⁺-loaded chicken erythrocytes. Mn²⁺ content of Mn²⁺-loaded cells amounted to 22 mmol/l cells. Mn²⁺ efflux was measured at pH 6 (A) and pH 8 (B) in KCl medium with different KCl concentrations. KCl in KCl medium was isoosmotically substituted by sucrose. Mean of 3 experiments.

preloaded either with Mn^{2+} alone or with Mg^{2+} plus Mn^{2+} , indicating the reversibility of Mn^{2+}/H^+ antiport. In agreement with the existence of Mn^{2+}/H^+ antiport, Mn^{2+} efflux was higher at pH 6 than at pH 7.4 (Fig. 4). Therefore, the H^+ as well as Mn^{2+} gradient are driving forces in Mn^{2+}/H^+ antiport.

Since Mn²⁺ efflux was operating in cells preloaded with Mn²⁺ alone, it can be concluded that Mn²⁺/H⁺ antiport can also be induced by the increased intracellular Mn²⁺ concentration. In chicken erythrocytes preloaded with Mn²⁺ plus Mg²⁺, Mn²⁺/H⁺ antiport was smaller than in cells preloaded with Mn²⁺ alone (Fig. 4). This result may indicate competition between intracellular Mn²⁺ and intracellular Mg²⁺ for the Mn²⁺/H⁺ antiporter, although Mg²⁺ was not transported out of the cell by this transport system.

Mn²⁺/H⁺ antiport in both directions was not inhibited by amiloride, furosemide or SITS (Table II). Thus, Mn²⁺/H⁺ antiport is different from Na⁺/H⁺ antiport which is inhibited by amiloride [4].

Antiport systems, such as Na⁺/H⁺ and Na⁺/Ca²⁺ exchange, which are operating in both directions, are independent of ATP, although these transport systems are modified by ATP with respect to intracellular affinity for H⁺ [4] or Ca²⁺ [5,6]. Therefore, we tested energy-dependency of Mn²⁺ influx. As also shown in Table II, Mn²⁺ influx in sucrose or KCl medium was not inhibited by 1 mM KCN plus 1 mM iodoacetic acid, indicating that Mn²⁺/H⁺ antiport was independent of ATP. Mn²⁺ influx via Mn²⁺/H⁺ antiport was activated by anions (Table I, Fig. 2). Therefore, we tested whether Mn²⁺ efflux was affected by extracellular KCl and NaCl. KCl (Table II) and NaCl inhibited Mn²⁺ efflux to the same extent, whereas ampholine-Cl had no inhibitory effect (data not shown). As can be seen from Fig. 5, Mn²⁺ efflux from

 $\mathrm{Mn^{2^+}}$ -preloaded chicken erythrocytes was competitively inhibited by KCl, K_i amounted to 35 mM. These results indicate that extracellular $\mathrm{H^+}$ and $\mathrm{K^+}$ compete in $\mathrm{Mn^{2^+}}$ efflux via $\mathrm{Mn^{2^+}/H^+}$ antiport.

The physiological significance of Mn²⁺/H⁺ antiport in chicken erythrocytes remains to be established.

REFERENCES

 Günther, T., Vormann, J. and Cragoe, E.J. (1990) FEBS Lett. 261, 47-51.

- [2] Torrubia, J.O.A. and Garay, R. (1989) J. Cell. Physiol. 138, 316-322.
- [3] Aronson, P.S. (1985) Annu. Rev. Physiol. 47, 545-560.
- [4] Grinstein, S., Rotin, D. and Mason, M.J. (1989) Biochim. Biophys. Acta 988, 73-97.
- [5] Blaustein, M.P. (1976) Fed. Proc. 35, 2574-2578.
- [6] DiPolo, R. (1976) Fed. Proc. 35, 2579-2582.
- [7] Günther, T., Vormann, J. and Höllriegl, V. (1990) Biochim. Biophys. Acta, in press.
- [8] Lüdi, H. and Schatzmann, H.J. (1987) J. Physiol. 390, 367-382.